If it’s broke, it’ll fix itself

How 200-year-old bacteria might heal the cracks in concrete

Concrete has been used in construction for thousands of years. Think of the Colosseum and the aqueducts of Ancient Rome. In the modern era, builders have sought to make improvements to the mixture’s strength, durability, and eco-friendliness. During the Industrial Revolution, engineers discovered better materials and faster ways to produce concrete. They began strength testing different mixes in 1836. The first concrete road in the U.S. was laid in 1891, and it handles modern auto traffic today. Recently, one company produced a concrete that locks in carbon dioxide as it dries. But through all these changes, one problem has remained unsolved: cracks.

These cracks start out small, but widen over time, which can make structures unstable: when water gets in the cracks, the metal rebar supports will rust and break. Workers can seal the cracks if they are spotted, but by then the damage could already be done, which leads to costly and time-consuming repairs. Even worse damage can occur if the cracks open in places where they won’t be noticed until it’s too late. To solve this problem, a new concrete revolution is under way. Someday, workers won’t have to inspect the dried concrete for cracks, because these cracks will seal themselves. That’s right—seal themselves!

Inspired by the way the human body heals itself after breaking a bone, Professor Henk Jonkers (pictured above) wondered whether it was possible to introduce healing abilities to a man-made material. As a microbiology researcher at Delft University in the Netherlands, Jonkers is particularly fascinated with bacteria. He began to envision embedding concrete with microscopic repairmen.

Knowing that bacteria produce limestone under certain conditions, he theorized that he could help cracks self-heal by adding a couple extra ingredients to the standard mix of sand, cement, and water. The first is a strand of bacteria called Bacillus, whose spores are sealed in biodegradable capsules. The other is the bacteria’s food source, calcium lactate. As a crack forms and water gets in, the water dissolves the capsules and activates the bacteria. The bacteria then consume the calcium lactate and produce limestone, which seals the cracks and protects the structure from further damage.

In the course of developing this concrete, several problems arose. The first was finding the right bacteria to use. Eventually Jonkers selected Bacillus because of its ability to survive in the high alkaline cement mix. Before being mixed into the concrete, the bacteria spores are placed in pods to prevent early activation, where they can survive for up to 200 years. These pods are made of a clay material that is weaker than the original concrete—that’s the second problem. To solve it, Jonkers and his team at Delft are now trying to pinpoint the highest percentage of the healing agent that can be added to the concrete mix before the strength and integrity of the structure is compromised. At the same time, the percentage
cannot be too low, or there might not be any healing agent in any given area where a crack appears.

Self-healing concrete is not in use yet, but scientists are optimistic that it will be soon, as reported in Smithsonian magazine. Right now the pricing is too high for most construction jobs, about double the cost per cubic meter, due to the high cost of calcium lactate. Jonkers hopes to get the cost down as the demand for his concrete increases, and he expects the product to be available in the next few years. Until then, cracks will continue to widen, unnoticed, until someone decides to fix them.

This post was written by Suffolk Construction’s Marketing Intern Morgan Harris. Connect with her on LinkedIn here.

3D-printed buildings: Is the future already here?

“Soon, we will be able to construct an entire building … with a printer.”

That was the headline for our blog story posted back in March 2015. It is now August 2016 and “soon” has arrived. A company called WinSun, which was featured in our previous 3D printing blog post, recently took another bold step forward in the “3D printed building movement.” The company announced — through its partnership with the country of Dubai, which is aiming to be the world leader in 3D printing — that it has built the world’s first fully-functional 3D-printed office building, dubbed the “Office of the Future.”

At more than 2,600 square feet, a building of this size would typically take five to eight months to build using traditional construction means, methods and materials. However, C|NET Magazine reported that it took a mere 17 days to print the building components layer by layer using a cement mixture. The 3D printer used for printing the building components was a massive machine, the size of a warehouse that stood 20 feet high, 120 feet long and 40 feet wide. It also took only two days to assemble those building components, with just a fraction of the manpower that would be required to construct a similar building this size.  In all, “Office of the Future” cost only $140,000 to build, saving approximately 50 percent of the normal labor cost.

Saif Abdullah Al-Aleeli, CEO for the Dubai Future Foundation, which is the organization that occupies the new building and is charged with the creation of other futuristic structures for Dubai, believes that “20 years down the road entire cities will be 3D printed.” So what do you think? Is the future of 3D-printed buildings really here?  We’d be interested to hear your thoughts…comment below!

This post was written by Suffolk Construction’s Marketing Intern Simone McLaren. Connect with her on LinkedIn here.

The future of work: Physical office, remote … or something else?

OfficeSpaceFeaturedPart3

The following is the third and final post of our series on the office space of tomorrow. 

Screen Shot 2016-04-22 at 2.12.38 PM.pngAfter our past blog posts about expansive new office buildings built by innovative companies such as Google, Facebook and Apple, office furniture designs of tomorrow, and the future of cubicles, it might be time for us to step back and ask a question that might be on the minds of many commercial developers, architects and business leaders as they look toward the future — will the workers of tomorrow even need office space in the first place?

The jury is still out, but the most recent data gives us hints about where the future of office space might be heading. According to a January 2015 Gallup report called “State of the American Workplace,” almost 40 percent of full-time workers in the U.S. work remotely, and of these, approximately 15 percent are permanently out of the office, and those numbers continue to rise. And many of these workers are not necessarily working from home but are working in coffee shops, shared spaces and other outside-the-office locations, which shows that many people simply want a change of scenery outside the office. Another noteworthy Gallup study concluded that the most engaged employees in the workforce actually spend up to 20 percent of their time working remotely.

And The Muse reported that research conducted by Nicholas Bloom, a Stanford professor who studies workforce trends, confirmed that working remotely actually increases productivity, overall work hours, and employee satisfaction. Over a nine-month period, Bloom observed 250 employees at a Chinese company where half the employees worked from home and half worked in the office. The data from studies like these speak volumes. Bloom found that removing the time it takes to physically commute to work and the distractions of the in-office environment made a huge difference. People who worked from home completed 13.5 percent more calls than the office workers, performed 10 percent more work overall, left the company at half the rate of their colleagues who worked in the office, reported feeling more fulfilled at work, and actually saved the company $1,900 per employee.

With that many people working remotely, and working more productively, the need for more office square footage must be unrealistic, right? Karim Rashid is just one of many industrial designers who is raising that important question  — “We’re losing institutions, losing banks, colleges. Do we even need physical space anymore? What about the office context? Does it need to physically exist anymore or not?” Continue Reading ›

MIT celebrates 100 years of innovation in Cambridge

Recently, the Massachusetts Institute of Technology celebrated the 100th anniversary of its move from the original MIT campus in Copley Square in Boston across the Charles River to Cambridge. The elaborate day-long ceremony was complete with fireworks, music, artistic performances, mobile art sculptures, robots and a quirky procession (over land and water) that pitted 30 teams against each other to see who could come up with the best parade contraption based on creativity, speed and MIT spirit.

But the eccentric party was about paying tribute to MIT’s spirit of innovation and invention as much as it was about recognizing its campus move across the Charles River back in 1916. But most importantly, the celebration was also an opportunity for school officials, alumni, students, inventors and citizens of the surrounding communities to recognize the incredible impact this prestigious institution has had on the region. And the world.

To acknowledge this historic milestone for MIT, in this post we celebrate one of the most groundbreaking inventions in construction, which was first conceived and tested on MIT’s Cambridge campus — reinforced concrete.

A stronger idea

Arguably, MIT’s most enduring construction invention was its development of reinforced concrete, which is concrete embedded with wire mesh andiStock_000017471545_Medium
steel bars to dramatically increase its strength. In fact, reinforced concrete was first tested and implemented on the MIT Cambridge campus during the construction of some of its earliest buildings, which means the campus itself was an active and operational incubator for ingenuity and ideation.

Before MIT inventors conceived this brilliant idea, buildings relied on masonry-bearing arches with steel infill that couldn’t hold much weight, relegating buildings to only five stories in height.

“Reinforced concrete changed all that,” said Gary Tondorf-Dick, program manager for Facilities’ Campus Planning, Engineering and Construction Group. “MIT architects and engineers were basically leading the design of this new type of concrete. It was perfected in the implementation of these buildings. It evolved in the 1920s and 1930s and was architecturally reinforced in the 1950s and 1960s. It was all designed here.”

This one invention helped open the door to the high rises and skyscrapers we see in cities throughout the world today. And the reality is that reinforced concrete hasn’t evolved or been improved much since the original concept was unveiled, which is yet another tribute to the thoughtful and innovative solutions that have been shared by the MIT community.

“MIT is about innovation and it’s a campus built for innovations,” said Tondorf-Dick. “There’s a whole series of MIT innovations that involve construction and the evolution, design and engineering of future construction materials that will change the industry.”

Look for more construction innovations coming out of MIT, including green incandescent light bulbs that conserve energy through “light recycling” and vacuum insulated glass that provides the thermal performance of modern double-glazed windows with the same thickness as a single pane of traditional glass. Stay tuned, and congratulations MIT!

This post was written by Suffolk Construction’s Vice President of Marketing and Communications Dan Antonellis, who can be reached at dantonellis@suffolk.com. Connect with him on LinkedIn here and follow him on Twitter at @DanAntonellis.

Ending the slump: Office furniture redefining employee-workstation relationship

The following is the second post in our series on the office space of tomorrow. 

Screen Shot 2016-04-22 at 1.21.40 PMSince the 19th century, factory machinery and office desks have been static, immovable objects that forced human workers to adapt to them. That means for centuries, workers have stood at machines, sat and slouched at work stations, and toiled in offices that were hardly conducive to normal human behavior and posture. The office space of the future promises to turn this traditional ideal of office furniture on its head, which will surely impact the ways that office space will be designed and used for generations to come.

While office floor plans and creative perks are still considered critical factors for adapting to the workforce of the future, some organizations are focusing on incorporating futuristic office furniture and flexible office partitions to create a work environment that promotes privacy and a more inviting and transparent approach that improves productivity.

One company on the forefront of this movement is Steelcase, the largest office-furniture manufacturer, and arguably the most innovative, in the world. Steelcase is creating new ways for employees to work individually and as teams. From stand-up desks and soundproof enclaves to drop-in-and-out video conferencing suites to strangely shaped office chairs, Steelcase’s primary goal is to develop the smartest, most informed take on trends in the contemporary workspace and then build products around those insights.

At Steelcase, teams conduct interviews with employees but also use sensors to track employee movements (i.e. in-chair squirming and general mobility), and then Steelcase designers create furniture prototypes onsite based on those experiments. Steelcase is committed to designing work furniture that encourages people to work, and feel, like humans again.

Steelcase launched its Brody WorkLounge system just last year based on a wealth of data focused on human work habits. By studying data from examining how students spend time in libraries, Steelcase developed the ultimate work-friendly lounge chair for the office. When sitting in the ergonomic cocoon, the worker’s body is positioned in an “alert recline” with the upper and lower back supported. And angled work surface holds your laptop at eye level while an arm support relieves pressure on the shoulders. Continue Reading ›

Three ways virtual reality could improve safety trainings

VR_safety_featured

In honor of OSHA’s 2016 Safety Week, part two of our series on virtual reality in the construction industry focuses on, what else, safety. Click here to check out the first post in our series.

Professional Man Wearing Virtual Reality Headset

With all of the new virtual reality headsets hitting the marketplace these days, it’s easy to write off VR as child’s play. But the truth is that the magic of gaming has the potential to transform a number of industries, including construction. And safety is one of the most applicable use cases for anyone considering investing in this burgeoning technology. Imagine if a construction worker could be transported from the training room to the jobsite simply by putting on a headset. They could actually see a hoist tipping or feel themselves losing balance while walking across raised beams.

Being immersed in these dangerous scenes would no doubt plant a seed of caution in the worker’s mind before they even step on site. VR could encourage them to make thoughtful decisions virtually before they make a mistake in reality.

Due to weather conditions and other variables, a VR simulation could never depict a construction site 100 percent accurately. But virtual simulators have proven to be an effective training ground for police, Marines and pilots. A study conducted by the Navy found that student pilots using Microsoft’s Flight Simulator were 54 percent more likely to score above-average in real life flight tests.

Similarly, the latest virtual reality technologies could take construction industry safety trainings to the next level. While the critical but basic tenants of trainings would not change, such as tutorials, safety orientations, qualifications, etc., VR could raise the bar on the kinds of training companies could provide their workers to keep them and others safe. Here are some practical examples of how VR could augment traditional safety trainings:

  1. Workers inside the VR jobsite could be presented with a scenario in which they have to point out all the possible hidden dangers in front of them, such as live wires, misplaced ladders or a worker cutting a small piece of steel with his protective goggles on top of his hardhat and not over his eyes.
  2. If a real accident occurs on the job, it could be recreated virtually to teach workers how to avoid the same mistake twice. Only an animated avatar would suffer the consequences of unsafe acts on the jobsite. One example could be a worker setting up a swing stage. One side of the swing stage slips down and strikes his left shoulder causing a minor abrasion. Experiencing this in VR would teach workers how to avoid making this same mistake on a real project site.
  3. VR could also become a much more effective platform for teaching workers how to safely perform their daily duties in a virtual environment. This could include navigating confined spaces, safely setting up ladders, welding or preventing fires from breaking out on the job.
Contstruction-site-Snapshot_004

Can you spot the safety infractions in this virtual construction scene? (Image courtesy of Inge Knudsen)

But the training room is not the only place VR can be valuable. VR could also be used to conduct safety inspections that are closely tied to scheduling. For example, the safety precautions for a specific task, such as erecting concrete precast planks, could be simulated weeks in advance before it is performed on the job so that everything is in place once construction begins.

While this is a tantalizing use case that could become a mainstay in the future, training is still the most practical and immediate use for VR when it comes to construction safety. Most people learn by doing, so oftentimes the most effective trainings drive home safety through real onsite scenarios and case studies. Using virtual reality to create a dynamic and lasting visual cue for construction workers would make all the difference in classroom safety trainings. Being immersed in dangerous situations virtually would surely cause workers to pause before engaging in an unsafe activity on a project site. And sometimes that short pause can be the difference between getting hurt — or worse — and staying safe.

This post was written by Suffolk Northeast’s Project Administrator Lindsay Davis. If you have questions, she can be reached at ldavis@suffolk.com. Suffolk National Safety Director Gary Cunningham and Suffolk Content Writer Justin Rice contributed to this post.

On the verge: Virtual reality reaches a tipping point in AEC

The following is the first post in a series on how immersive reality technologies such as virtual reality and CAVE rooms are reaching a tipping point in the AEC industry. Check back during National Safety Week (May 2-6) for our next installment about using virtual reality to improve safety trainings.

Gunnar Skeie recently sent a building information model to the organizers of a workshop on immersive visualization technology for construction at Scalable Display Technologies.  Only a week later, he was standing between a red sofa and a giant interactive panoramic computer screen mounted on an orange accent wall in Scalable’s lofted office space in Cambridge, Mass. Putting on the new HTC Vive virtual reality headset, Skeie’s mouth fell agape as he was instantaneously transported to a sun-splashed atrium with a four-story floating staircase. He craned his neck to observe the skylight overhead and instinctively reached out his hand to navigate around furniture. Skeie intently inspected every nook and cranny of the virtual version of a BIM model he spent a year crafting and could now see in an entirely new way.

“Mind blowing,” the virtual design in construction manager for Norwegian construction company Kruse Smith told us after pulling the VR goggles off his head as if he was coming up for air. “I was actually able to go into the atrium and see what the glass elevator shafts are going to look like.

“I’m sure our client would have loved it and the tenants would have loved it. To have that as a tool to communicate the design throughout the phases would be fantastic.”

While it only took the workshop’s organizers a few days to create this VR world, it would have taken months to convert a CAD, BIM or Revit model into a high-quality virtual reality experience for owners just a few years ago. And spending so much time on VR canabilized the time needed to design the physical structure itself. But this once laborious process has been streamlined by the advent of computer engines used for video game systems. New software programs that are quickly becoming more compatible with VR headsets are also making this process more feasible than ever.

Owners no longer have to try to imagine what it will be like to walk through their building based on drawings presented to them on a 2D computer screen that only their architects can fully decode. They can simply step inside the building by slipping on VR goggles. Owners could walk around a space, turn around and even look in another direction to gaze at what the views will be like from every vantage point. While a blueprint can give them the exact dimensions of a room, VR will given them a true sense of how big a room will feel.

Continue Reading ›