Can you dig it?

Unearthing the evolution of power shovel technology

Every summer, gearheads gather to strut their classic cars. Show-goers marvel at rumble seats, whitewall tires, and gratuitous fins. Wouldn’t it be cool if there was a club for enthusiasts of vintage construction vehicles, too?

There is: the Historical Construction Equipment Association (HCEA). Mechanics, retired operators, and history buffs restore and maintain old machinery once used to scoop and move the earth for foundations, tunnels, roads, and farms. Check out the video below. The New England chapter holds their annual show this weekend. If you go, you’ll see vintage bulldozers, dump trucks, tractors, and clam shell excavators in action.

100_ton_steam_shovel,_circa_1919For some reason—maybe all those childhood readings of Mike Mulligan and His Steam Shovel—we’re particularly taken with the antique cable excavators. First patented by William Otis (cousin of elevator safety brake inventor Elisha Otis), the steam shovel was crucial to some of America’s great builds, from iconic Manhattan skyscrapers like the Chrysler and Empire State buildings to enormous engineering projects like the Panama Canal.

2006131175834_Erie_B2To dig dirt at the turn of the century, a steam shovel operator pulled levers to yank on steel cables that would work a bucket at the end of a dipper stick attached by winch to a boom. When the bucket was full, the shovel would swivel around on a turntable and the bucket’s “tongue” would loosen, dumping the dirt into a waiting truck.

Diesel power made the steam model obsolete, and diesel shovels in turn were supplanted by the widespread adoption of hydraulics in the 1960s. Fortunately for posterity, folks from the HCEA have made an avocation out of salvaging, fixing, and exhibiting these and other fun-but-outmoded construction vehicles. The group also has chapters in New Jersey, Florida, and Southern California. Here’s some footage of restored steam shovels and other vintage vehicles at work:

The new wave

While we have a soft spot for that old-school equipment, our minds are blown by the latest advances in digger technology. At this year’s CONEXPO-CON/AGG & IFPE show—a conclave of researchers, engineers and construction industry game-changers—all eyes were on the large-scale 3D-printed steel excavator.

An innovative team made up of industry, academic and government partners collaborated to create the first fully functional excavator using 3D-printed components. This impressive development, called Project AME (for “additive manufactured excavator”), represents a potential leap forward for the industry.

Project AME diagramThe machine’s cab, boom, and heat exchanger were 3D-printed. Using low-cost steel, the seven-foot-long, 400-pound boom was printed in a mere five days, while the carbon fiber cab was created in just five hours, with no loss to aesthetics or function.

The crowd at this year’s CONEXPO-CON/AGG and IFPE had the opportunity to watch this excavator do its thing. Additive manufacturing—the process of manufacturing layer by layer from 3D model data—allows engineers to print products on demand, virtually eliminating the need for mass storage and lowering transportation costs. The futuristic excavator has the potential to reduce material expenses and maintenance duties, while simultaneously cutting fuel emissions. ForConstructionPros reported on the process:

Project AME was in good company at the convention. Cat COMMAND made a strong showing with hands-on demonstrations of a remote-control digger. Cat developed this technology in 2016 with the introduction of RemoteTask, a remote control system exclusive to Cat Skid Steers and limited to a 1,000 foot wireless radius. Since then, substantial progress has been made.

With Cat COMMAND, technicians can remotely operate machinery from significantly farther distances, bolstering both safety and productivity while maintaining high standards of efficiency and accuracy. A well-designed Cat COMMAND station seats the operator comfortably and provides integrative, wireless control of the machinery’s systems, further reducing on-site dangers such as prolonged exposure to noise, dust and vibrations. The system exhibited at CONEXPO allowed an operator to work from—dig this—1,400 miles away:

The convention is only held every three years. Who knows what we’ll see at CONEXPO-CON/AGG 2020? A giant 3D-printed, remotely operated, drone digger that flies in to scoop from above, and also delivers your coffee without spilling a drop? We’ll just have to wait and see.

This post was a collaboration between Suffolk’s Insurance Coordinator Lindsay Davis and Content Writer Patrick Kennedy. If you have questions, Lindsay can be reached at ldavis@suffolk.com and Patrick can be reached at pkennedy@suffolk.com. You can also connect with Patrick on LinkedIn here or follow him on Twitter at @PK_Build_Smart. Video editing by Suffolk Intern Simone McLaren. Audio track: Bennie Moten’s Kansas City Orchestra, “Kater Street Rag.” 

Demo, hold the dust

Safer, smarter practices in demolition

Sometimes, before a new building can go up, an old one must tumble down. Whether it’s fallen into disrepair and been deemed unsafe, or a new development can’t feasibly incorporate the old, some structures end up on the wrong end of a wrecking ball.

But modern demolition entails more than just smashing things or blowing them up. Complicated layouts such as aging power plants and bridges present unique challenges. Asbestos or other hazards might well lurk. And to be green, reusing and recycling are de rigueur. Let’s explore a new wave of innovation in the art and science of deliberate destruction. 

Hats off for the hat method

Three rival Japanese firms manage to demolish high-rises without smashing or blowing up anything at all. Across the nation, hundreds of towers more than 100 meters (328 feet) tall were erected four or five decades ago. Most aren’t up to the nation’s current, more stringent earthquake codes. That means a big demand is nigh for efficient, environmentally responsible demolition that doesn’t disturb the neighbors. (In densely-built Tokyo, as in many cities, there’s hardly even room to swing a wrecking ball today.) To meet that demand, the Taisei, Takenaka, and Kajima corporations are in a race to perfect a technique whereby a building is dismantled floor by floor.

In the Taisei and Takenaka systems, a protective “hat” or “capping” hangs from a high-rise’s roof. Covering the top three floors, this suspended scaffolding is covered with dust and noise barriers. Inside, crews cut holes in the floors and install temporary columns and giant hydraulic jacks. Then with jackhammers and excavators, they break apart the floors and walls. A ceiling traveling crane brings the refuse to an opening where a telpher crane lowers it to the ground floor. There, workers load the broken-up concrete and steel onto trucks that ferry it to a recycling center.

An illustration of the Taisei Ecological Reproduction System. To truly geek out on this, see the sequential diagrams in this slide show. (Source: Taisei Corp.)

Once a floor is demolished, the jacks lower the capping, and the cycle repeats. In this way, Taisei shrunk the 139-meter (456 feet) Old Grand Prince Hotel Akasaka by two floors every 10 days.

That project was covered by Wired and other American outlets. However, the Italian engineering firm Despe has been taking down buildings in a similar manner for years. They call their method Topdownway:

Taisei takes the method further by using a telpher crane that actually generates electricity. Though the crane itself uses electrical power, the motion of the crane dropping and rising creates energy that is captured and stored in a battery. The new energy powers lights and fans inside the capping.

Kajima’s demolition method is similar, using giant hydraulic jacks to shrink a building, but they dismantle from the bottom. The Kajima Cut and Take Down Method takes inspiration from a Jenga-like traditional Japanese game, Daruma Otoshi. See the time-lapse video of a Kajima project:

Cons and pros of these seemingly painstaking methods? It takes months to deconstruct a building, and it isn’t cheap. But Taisei estimates it reduces carbon emissions by 85 percent, noise levels by 20 decibels, and dust by 90 percent. Despe says its system contains 100 percent of the dust. Plus, the Italian company provides clients with advertising space on its highly visible protective tent.

Work in the enclosed space is not subject to the whims of weather. And best of all is the safety benefit. Whether inside the “hat” or operating from the ground floor, there’s no danger of debris or equipment falling on workers or passing pedestrians.

When failure begets success

Even the more dramatic form of demolition—using explosives to effect a controlled implosion—can be done in a smarter, more efficient way. A new entity in the UK offers a streamlined, tech-enhanced process, using robotics as well as explosives honed in the military.

The Atom Project comprises three firms that came together in the wake of tragedy. In February 2016, the conventionally planned demolition of the UK’s Didcot Power Station went awry when the building partially collapsed, killing four workers. For months, it wasn’t even safe to enter the teetering ruin to retrieve the workers’ bodies.

3061742_AR-Demolition_Dagenham_1

An AR demolition robot at work.

The power plant owners fired the previous demolition contractor and brought in Arcadis, AR Demolition and Alford Technologies to collaborate on a solution. Pooling their experience, they used point cloud laser surveys to assemble a 3D model of the site to plan the number, placement, and strength of explosives. Top-of-the-line Kiesel demolition robots—capable of switching attachments in minutes—rolled in to cut and remove anything that could be salvaged.

The robots then placed linear cutting charges in the planned locations. These are explosives engineered to blast a knife-like cut into steel or concrete. They’re common in the military, but not yet in commercial demolition. “There’s a reticence about adopting the technology,” Alford Technologies Managing Director Roland Alford told the Construction News, “but it is totally reliable.”

The effort succeeded in bringing down the rest of the power plant—entirely remotely. The three companies decided to continue their partnership. Alford declared, “This is the iPhone moment for demolition,” a potential sea change in the way demo is done.

Rise of the “robots’” relevance

Of course, demolition robots themselves are not new. Swedish-based Brokk sold its first such vehicle in 1976. But their use is growing, for safety and cost reasons. Although they’re not, strictly speaking, robots.

“‘Demolition robots’ is the generally accepted term,” said Peter Bigwood, VP of sales and marketing for Brokk’s North American division. “It sounds cooler and trips off the tongue better than the more accurate nomenclature, which would be ‘remote-controlled demolition machines.’”

Brokk_PrecisionCuttingCoring_WideConcreteDemo2-display

Precision cutting with a Brokk machine.

Human technicians operate electric-powered Brokk and similar machines from a safe distance—as much as 100 yards away if need be. At trade shows, Bigwood will ask potential customers, “And would you like Brokk binoculars with that?”

Bigwood says several factors explain why his company is selling more Brokks than ever before—even with new competition from Husqvarna, suggesting “the pie is bigger,” he said.

“It’s really hard to get labor in construction,” Bigwood said. “There are parts of the country where you won’t find a guy who’ll operate a jackhammer.” Those who will are aging. “The spirit is willing, but the flesh is weak. They hurt their back or shoulders,” and that leads to expensive workman’s compensation claims. “If a robot costs 150 grand, that might be cheaper than a couple shoulder operations.”

Added to that, Bigwood said, is “a greater emphasis in the industry on safety, which as a human being I welcome wholeheartedly.” Hammering from afar using a remote control box means “keeping your workforce safe so they can go home at night.”

Demolish smart

Oftentimes, smart demolition is simply a matter of smarter planning. Derrick Chery, project manager on a Suffolk job in East Boston, worked with JDC Demolition to demolish a smokestack. Before imploding it, the team calculated the radius of the area that would be filled with smoke and dust; they then flooded the area to drastically reduce the dust.

“It’s not common to do a takedown that way, but it saved us a lot of time,” Chery said. “A few mini-excavators picked up all the brick and it took us only a couple hours to get it cleaned up,” versus the delays in a dust cloud scenario.

ENR recently reported on an innovative approach to a complex project, the dismantling of an abandoned sugar factory in Colorado. The team there used careful planning and asbestos-proofed trucks in order to defer the asbestos abatement to an outside facility.

And for complexity, you can’t beat the San Francisco–Oakland Bay Bridge. In three sections—two suspension bridges and a cantilever bridge—this 1930s structure stretched four and a half miles across the bay. With the opening of a new and more quake-resistant Bay Bridge, the old bridge has been under deconstruction since March 2015. The gargantuan effort includes cutting, imploding, and shipping away trusses on barges. Essentially, crews are taking the bridge apart in the reverse order of how it was built.

What happens to the materials?

Many in the Bay Area have wondered, what’s to become of the 167,100 tons of steel that made up the Bay Bridge? Most of it will be sheared to size and reused in construction projects across the country.

But much of the steel has been set aside for public art. For example, AECOM—an architectural firm that has been a frequent collaborator with Suffolk—will turn some of the salvaged steel into stylized benches and planters along a new river walk called Clipper Cove Promenade. Pedestrians will be able to stop and relax on pieces of the old bridge as they take in views of the new.

AECOM river walk

A rendering of AECOM’s Clipper Cove Promenade. (Rendering courtesy of Oakland Museum of California)

Recycling can happen on a smaller scale, too. A Suffolk project team in southern Florida found 16 pallets of unused paint in a site slated for demolition. “It’s amazing that much paint was sitting around,” said Suffolk Senior Virtual Design & Construction Manager Kyle Goebel.

Rather than pay for disposal (or worse, cart it off to a landfill), Goebel arranged to donate the paint—all $25,000 worth—to the local Habitat for Humanity. Soon Habitat’s volunteers will be painting the walls of affordable homes in the region. “The cost of living is always an issue here,” said Goebel. “The fact that we were able to salvage this material efficiently and for a good cause was a great use of resources.”

Crash, boom, bang

Of course, recycling, robots, giant jacks and noise barriers, and all these innovative demo methods do lack one thing: the satisfying punch of a wrecking ball or dynamite implosion. So in case you need to scratch that itch, we’ve put together this little montage. Enjoy!

This post was written by Suffolk Content Writer Patrick L. Kennedy. Video edited by Suffolk Content Marketing Manager Zachary Leighton. If you have questions, Patrick can be reached at PKennedy@suffolk.com. You can connect with him on LinkedIn here or follow him on Twitter at @PK_Build_SmartYou can reach Zach at ZLeighton@suffolk.com or connect with him on LinkedIn here.

We have the technology … why not wear it?

As the wearable technology market continues to grow, we round up a few of the newest and most innovative articles of attire intended to boost safety and productivity in construction.

Lending a bionic hand

Ekso Bionics’ Zero-Gravity Arm aims to make operating heavy hand-held machinery easier and safer. The company gained its rep producing exoskeletons—wearable robotic aids for soldiers and the partially paralyzed—and is now branching out into bionics for the construction trades.

Ekso’s new Zero G arm renders power tools (up to 36 pounds) virtually weightless. Though exoskeleton technology takes some getting used to, noted a Wired reviewer, the effect is to enhance the user’s strength, mobility, and endurance. The system works on the same principle as the Steadicams used in Hollywood, swiveling about on springs and counterweights. The bionic arm also absorbs the powerful feedback produced by power tools, reducing strain on the worker.

When put to the test (see video below), a worker using the zeroG arm completed a jobsite task not only faster, but with more accuracy and much less fatigue. Meanwhile, a worker using the traditional method tired sooner, and took far longer to complete the task:

(For a less polished but more comprehensive video exploration of the Zero G Arm, check out Marko Kaar’s review.)

Tactical textiles

In Britain, more than 10,000 insurance claims have been made for vibration white finger and carpal tunnel syndrome over the past decade, according to the British Health and Safety Executive. That’s a cost of £20 million to £250 million (or roughly $25 million to $322 million). And these conditions result from continuous operation of vibrating hand-held machinery.

Seeking to combat these permanent industrial diseases, a new wearable technology being developed at Nottingham Trent University in the UK warns construction workers when a hand injury is imminent. The e-gloves, not much bulkier than average heavy-duty work gloves, are embedded with tiny sensors that warn workers when they’re exposed to dangerous levels of vibration.

Only 2 millimeters long, the sensors are imbedded into a yarn textile and knitted into the gloves. The seemingly simple technology performs an impressive safety duty. When triggered by dangerous levels of vibration, these tiny sensors warn wearers to stop work.

The-prototype-600x414

A prototype of the e-glove. (Photo courtesy of Nottingham Trent University)

Vested interest

Redpoint Positioning has developed an innovative safety vest that protects workers and has the potential to improve incident reporting, drive efficiency, and cut costs.

Embedded with Redpoint’s indoor GPS tracking system, this high-tech personal protective equipment (PPE) gives full visibility to jobsite operations. When a worker enters a designated “danger zone” on the jobsite, it triggers the vest’s flashing red lights and audio feedback, while managers receive customized digital data on the worker’s location. The data is tracked and logged to help manage on-site safety practices.

Redpoint calls the technology a “wireless safety net,” lending an integrated approach to PPE. Of course, some workers might chafe at the thought of being tracked, and it is important not to abuse the technology, said Gary Cunningham, recently retired as Suffolk’s national safety director. “It has to be a partnership,” Cunningham said, with the shared goal of reducing injuries.

But “if you’re afraid of a tracking device,” said Suffolk Senior Safety Manager Joe Villela, “throw away your cell phone!” At 1700 Webster in Oakland, Villela gave workers radio frequency identification (RFID) tags to wear. “The whole point is safety,” he said. “In case of a catastrophic event, such as an earthquake—which on the West Coast we know is not a matter of if but when—we can make sure everyone is out of the building.”

The RFID tags, from Trimble, were effective, though they weren’t as flashy (literally) as the Redpoint vests:

A step forward for construction footwear

SolePower founder Hahna Alexander was recognized by Toyota’s “Mothers of Invention” female entrepreneurs’ series. Her innovation: generating electricity through footsteps. Alexander found a way to harvest kinetic energy from the human motion of a heel hitting the ground. The energy then transfers into a mechanical system, which, in turn, uses it to spin a micro-generator. In simple terms, human energy fuels kinetic chargers, providing a better, lighter power source.

This power source, when placed inside the back of a work boot, wirelessly gathers data and measures worker safety, efficiency, and productivity. The SmartBoot technology promises to keep workers safe, fit, and productive, and could be valuable on a worksite in lowering accident rates, tracking hours and monitoring workers’ locations in the event of an emergency. In turn, these incredible Smartboots could save money, lives and time, and improve incident reporting accuracy on the jobsite.

This post was written by Suffolk’s Insurance Coordinator Lindsay Davis. Content Writer Patrick Kennedy contributed additional reporting. If you have questions, Lindsay can be reached at ldavis@suffolk.com and Patrick can be reached at pkennedy@suffolk.com, or you can connect with him on LinkedIn here or Twitter at @PK_Build_Smart.

Stop the sway, a simpler way

Streamlining the counterweight systems that limit a building’s wobbles

Take note, high-rise builders and daring designers. You know those giant counterweights, called tuned mass dampers, that keep spindly skyscrapers and bridges from swaying in the wind? Well, now there’s a pint-sized portable tuned mass damper.

Wait a second. How does a regular tuned mass damper even work? A little background: especially at great heights, a structure can be strong without being stiff, and when it lacks stiffness relative to the forces acting on it—wind, footfalls—it can swing perceptibly. The building won’t topple, but the movement can cause occupants alarm, discomfort, even nausea. A notorious example, Boston’s John Hancock Tower, swayed as much as three feet off its base before dampers were added.

Increasingly common in Manhattan, the typical tuned mass damper (TMD) is essentially an enormous counterweight on springs or a pendulum, built into the top portion of a tower. When high winds push on the building, the weight swings in the opposite direction, staying the tower’s shift. But in order to make it work, engineers have to “tune” the damper to match the building’s natural frequency, ensuring that the weight swings just enough to counteract the wind. (Frequency being the speed of a vibration.) Practical Engineering explains it all with a fun video here.

The drawbacks are size and cost. For example, the 728-ton steel ball that stabilizes the 1,667-foot-tall Tapei 101 tower in Taiwan cost $4 million—and it takes up six stories of prime real estate.

A lighter package

By contrast, a portable tuned mass damper, under development at Virginia Tech, weighs about 275 pounds. And a building owner with no technical training can adjust the damper’s settings with a five-dollar iPhone app.

Of course, the damper itself will cost more than $5, but it will be affordable, says its inventor, Mehdi Setareh, an architecture professor and the head of the Vibration Testing Lab at Virginia Tech. “What I’m trying to do is reduce the cost so it can become more common,” Setareh told us. “It’s like what Henry Ford did with cars.”article-image.img.490.high

Setareh’s invention is best suited to those modern buildings constructed of lightweight materials and given swooping, eye-catching shapes with computer-aided design. Setareh is himself an award-winning structural engineer who helped design the dramatically cantilevered headquarters of MFP Automation Engineering (right).

1376915

Such bold designs have become more common—and along with them, so have complaints about noticeable vibrations, according to Setareh. His lab has studied and helped modify structures such as a theater balcony in Detroit and the monumental stair in the Zaha Hadid–designed Broad Art Museum in East Lansing, Michigan (left). “The floors are designed for strength,” Setareh hastened to point out. “When people walk on the floor, it holds the load, no problem.” But a slight bounce gives users the unwelcome impression of shakiness. “It can be scary, or at best annoying.”

5291203

A prototype portable tuned mass damper. (Photo Courtesy of Virginia Tech)

Rather than sacrifice aesthetics or boost costs by building with heavier beams, said Setareh, architects (or, after the fact, building managers) can apply a simple fix. Acting like a shock absorber, the portable tuned mass damper (PTMD) consists of a weight on springs, tuned to have a natural frequency close to that of the floor. When the floor is rattled by foot traffic, the springs are activated and the movement of the weight pushes back against the movement of the floor, neutralizing it. “When the floor goes down, the damper mass goes up,” Setareh said, “and when the floor goes up, the mass goes down.”

The device sits two feet high and weighs a fraction of the floor, but it compensates by moving ten to twenty times faster than the floor vibrates. “So even though the mass of the [PTMD] is, say, 200 pounds, it’s like 4,000 pounds of force moving against the floor,” Setareh said. “That’s how it reduces the vibration substantially,” up to 60 percent in the Virginia Tech lab’s testing facility (see below).

A result of rocketry

That’s a fine solution for a variety of unique buildings—hospitals, theaters, corporate headquarters. But what about a straightforward residential high-rise? It’s hard to imagine a small, convenient version of the titanic TMD at Tapei 101.

And yet, a team at NASA has developed a damper the size of a coffee can (though it sits in a long pipe filled with water) that can stop a tall building’s shakes in a heartbeat. Spun off from rocket technology, a variation of this “disruptive tuned mass” has been installed on the new 32-story 461 Dean in Brooklyn, the world’s tallest modular building. It turns liquid into a secondary mass that absorbs and dissipates the energy of a building’s vibrations.

PS_8

461 Dean, the world’s tallest modular building.

Engineering firm Thornton Tomasetti licensed the technology and adapted it to 461 Dean (right), which is built of lightweight steel modules. Thornton Tomasetti’s rooftop system, which they call a fluid harmonic absorber, consists of four U-shaped PVC pipes, each 50 feet long and three feet in diameter. Air springs are fitted to the outside of the pipes and tuned to a certain “sloshing frequency,” explained Michael Wesolowsky, a Thornton Tomasetti engineer. The tubes are pressurized so that during a wind or seismic event, air pushes on the water, and then vice versa.

“The liquid is tuned to slosh back and forth at exactly the same frequency as the building’s movement, but out of phase,” said Wesolowky, “pulling the building back in the opposite direction,” thereby keeping it steady.

PS_9

Installation of fluid harmonic absorbers on 461 Dean’s rooftop. (Photo courtesy of NASA)

“It’s like the air spring in your car,” added Elisabeth Malsch, another Thornton Tomasetti engineer, “if you have a newer, fancier car.”

Already, the system has performed well on high-wind days, Malsch said. And it has advantages over the gargantuan conventional TMDs. The absorber at 461 Dean (the first of its kind in a commercial application) is “cheaper, lighter,” said Malsch. “It required very little reinforcement” to the building below. It’s also easier to tune, not to mention maintain. After all, “we know how to patch leaks in pipes,” Malsch said.

Like the PTMD out of Virginia Tech, the fluid harmonic absorber can be installed after initial construction is complete, if a structure turns out to behave differently than predicted in high winds. The Smithsonian speculated that historic landmarks built before earthquake codes might be retrofitted with the NASA-bred system, another benefit of which is its fast-acting nature. (Skyscrapers can still sustain damage during the few seconds it takes for a quake to activate a conventional, pendulum-style damper.)

Malsch can attest that older buildings are good candidates for the addition of such a cutting-edge streamlined damping system. Her office is in Manhattan’s 40 Wall Street, at 71 stories the world’s tallest tower when it was completed in 1930 (before being surpassed by the Chrysler Building a few months later). On windy days, the structure’s age is apparent—or audible.

“Every six seconds,” said Malsch, “you can hear it creak.”

This post was written by Suffolk Construction’s Content Writer Patrick L. Kennedy. If you have questions, Patrick can be reached at PKennedy@suffolk.com. You can connect with him on LinkedIn here or follow him on Twitter at @PK_Build_Smart.

The Space Needle, the Jetsons, and what today’s futurists see for tomorrow

It looks like a flying saucer, perched atop spindly, upward-swooping legs. It’s as if a UFO and its exhaust trail were frozen mid-takeoff. Like something out of a sci-fi movie. And that’s the point.

In case you missed it, the Seattle Space Needle recently turned 55—old enough to get the senior discount at Old Country Buffet. Much like the Eiffel Tower in Paris, the Space Needle was built for a World’s Fair; attracted its share of criticism; and is now a landmark that defines its city’s skyline. And while this Space Age artifact may seem a tad dated now, its influence has rippled across the decades and perhaps—if a company called Arconic fulfills its vision—will continue to alter skylines in 2062.

Speedy in Seattle

The Space Needle was conceived as the centerpiece of Seattle’s Century 21 World’s Fair, a showcase of tomorrow’s technology. It was vintage midcentury: can-do optimism, tinged with Cold War urgency. The Soviet Union had shocked Americans when it sent the first satellite into orbit in 1957, kicking off the international space race. But in the JFK era, with federal dollars flowing to scientific research, and finned automobiles speeding down superhighways, anything seemed possible.

Rising 605 feet high—then the tallest structure west of the Mississippi—the Needle was built in just 400 days, at a cost of $4.5 million. The foundation, which was 30 feet deep and 120 feet across, took 467 cement trucks about twelve hours to fill. It was the longest continuous concrete pour attempted in the West at that time.

fivethings1_0_0-1

Work on the Space Needle’s immense foundation. (Photo courtesy of the Museum of History & Industry)

1024x1024

The Needle’s top house under construction. (Photo courtesy of the Seattle Post-Intelligencer)

Including 250 tons of rebar, the foundation weighs 5,850 tons; the Needle structure itself weighs 3,700 tons. This means its center of gravity is just five feet above the earth’s surface. The Needle is fastened to the foundation with 72 thirty-foot bolts.

Not only can the Needle survive earthquakes (e.g., one in 2001 that measured 6.8 on the Richter scale), but it was designed to withstand winds of up to 200 miles per hour—double the code requirements in 1962.

But what struck most was the daring design of the tower and its bulbous top house. The spacecraft look was deliberate. Initially, the building was painted with colors “Astronaut White,” “Orbital Olive,” “Re-entry Red,” and “Galaxy Gold.” As the building seemed to reach for the stars, it signaled a nation’s upward progress.

Construction was completed in December 1961. The Needle’s signature rotating restaurant held an opening gala on March 24, 1962. The Century 21 World’s Fair officially opened on April 21.

Seattle_Space_Needle_CropUnlike other architectural relics of the period—e.g., unloved Brutalist exemplars such as Boston’s City Hall and the Salk Institute in La Jolla, California—the Space Needle appears on T-shirts and postcards, earned official Seattle landmark status at age 37 (in 1999), and remains one of the city’s most popular tourist destinations. While many Sixties buildings raised eyebrows, the Needle prompts smiles as well. It may be that, along with its aspirational spirit, the tower’s very cartoonishness is what makes it so endearing—and enduring.

The Jetsons connection

That drawn quality quickly translated into actual cartoon form when The Jetsons debuted on TV in September 1962. The series imagined a family in 2062. The Jetsons and their contemporaries drove flying cars, employed robot maids—and lived in high-rises that looked a lot like the Space Needle. In case you were deprived of re-runs as a child, here’s the program’s opening:

The resemblance of the Jetsons’ home to the Space Needle was no accident, animator Iwao Takamoto told the New York Times in 2005. The “skypad” on stilts took direct inspiration from the Seattle tower.

Art imitates life, and vice versa. A new engineering company called Arconic—spun off the aluminum giant Alcoa—has taken inspiration from The Jetsons to reimagine the world of 2062. Arconic’s updated Jetsons drive flying cars and live in skypads that make use of technologies currently in development or, in some cases, available already. The company hired filmmaker Justin Lin (Star Trek Beyond) to illustrate their vision with this video:

Arconic’s futurists predict that three-mile-high skyscrapers will be built using 3D printing. The technology will allow for more organic, nature-inspired shapes. “I think you will see less of the square, boxy shape of current skyscrapers,” Arconic’s Don Larsen says in another promo video.

Arconic skyscraper

Furthermore, Arconic hopes those skyscrapers will employ their products such as Bloomframe. This is a motorized window that transforms into a balcony in less than 60 seconds.

hofmandujardinwelcomebloomframe03tileMoreover, those windows would clean themselves—and the environment—if coated with EcoClean, an Arconic product already on the market. This titanium dioxide coating absorbs light and water vapor, activating free radicals (the atom-sized variety), which suck up and eliminate dirt as well as pollutants in the air around a building.

Will Arconic’s vision come to pass by 2062? Nobody can answer that. But the company is making a big bet on it, investing millions in advanced materials and technologies. At a time when much of the talk nationally is about fear of the future and a return to the past, Arconic’s embrace of a bright tomorrow is refreshing. So it’s no surprise we can trace the roots of this campaign to the audacious tower that rose over Seattle to celebrate and imagine the 21st century, back in 1962.

This post was written by Suffolk Construction’s Content Writer Patrick L. Kennedy. If you have questions, Patrick can be reached at PKennedy@suffolk.com. You can connect with him on LinkedIn here or follow him on Twitter at @PK_Build_Smart.

High tech, low bar

No learning curve with these AEC innovations

Your workload is big enough already. You don’t want to spend a lot of time learning how to use a new tool. Of course, the up-front investment of time should translate into time savings down the road. Yet the reluctance to learn something new, along with other factors, can pose a big barrier to tech adoption.

So it’s welcome news when an innovation promises to improve practices or workflow without requiring a day to figure out how to use it. In that vein, we take a look at some new products with potential. These advances in familiar technology aim to improve upon things you already use, whether in the office, trailer, or job site.

A VR vision, easy to view

“For a technology to crack the mainstream,” wrote the New York Times in January, “there is an unspoken understanding: It shouldn’t make the people who use it want to throw up.” And yet, the Times reported, at the International CES trade show in Las Vegas, the presenters of one 3D headset made barf bags available to users, just in case. It seems that wearing virtual reality goggles can be not only disorienting but sometimes literally nauseating.

A new app called Building Conversation removes these barriers by putting virtual and augmented reality on a tablet or smart phone. Imagine an architect and a developer standing at the edge of an empty lot. The architect simply hands over an iPad; the developer aims it at the site; and a 3D vision of the tower appears on the screen, overlaid atop the real-life view. If their meeting takes place instead in a boardroom, the tablet can be pointed at the table, where, through the screen, a holographic model of the building appears. A contractor and subcontractor can use the app to virtually walk through a model of the building. In whichever mode users select, they can pan through or around the image as they move. No goggles—or barf bag—required.

There’s less of a “wow” factor than with an immersive headset, but the image is clear enough and the ease of use can’t be beat. Plus, by allowing stakeholders to literally share the vision, passing the tablet back and forth and looking at the same 3D image together, this twist on VR/AR technology brings back the human interaction that is essential in project development.

Continue Reading ›

Best of the Build Smart Blog 2016

Before we pop the bubbly and close the book on year two of the Build Smart Blog, let’s take a look back at some of our favorite posts of 2016. In case you missed them the first time around, here are five stories that captured our imagination, revealing ways that tomorrow’s built environment might take shape, and delving into the advances in architecture, engineering and construction that make these visions attainable.

Super Bowl shuffle: Stadiums of the future will feature interactive and civic spaces: Putting the brakes on your tailgate party to go watch the game? So early 21st century. Future fans will enjoy tailgating inside the stadium. That stadium, by the way, will expand and contract depending on the size of the event, for year-round use.

Screen Shot 2016-02-03 at 4.02.48 PM

Office space of tomorrow: Millennials and “accidental encounters” drive future of office design: Say goodbye to static rows of cubes. Open plans, smart technology, and greater attention to collaboration and wellness are driving changes in the corporate workplace. What does this mean for designers and builders?

Screen Shot 2016-04-14 at 10.01.06 AM

Throwback Thursday: Turning the first sod: For a new twist on an old ceremony, Suffolk set the bar high with its “virtual groundbreaking.” But what’s the story behind groundbreakings? When we dug into it (no pun intended), we discovered the ancient roots and colorful past of this familiar construction tradition.

MIT students win Hyperloop competition: Elon Musk’s audacious Hyperloop—a magnetic transit system taking passengers between Los Angeles and San Francisco in 35 minutes—will require a massive infrastructure build. And when it comes to making the Hyperloop train go, the smartest engineers in the room might be a team of students from MIT.

MIT featured image

High-tech timber erected at UMass: This ain’t your great-grandfather’s wood construction. Cross-laminated timber makes for a building that is sustainable, fire resistant, and versatile. See why this story remains one of our most popular.

1. UMA IDB_exterior_View from across NPleasant

We look forward to bringing you more stories about cool stuff happening in the construction industry in 2017! Got your own story ideas? Send them to Patrick L. Kennedy at PKennedy@suffolk.com.