A park or farm in the last place you’d look

Inventive designs cram bounties of vegetation into unexpected spaces

In dense and growing cities, plant life is at a premium. Urban planners know the benefits of a bit of botany. As San Francisco-based advocacy group Canopy explains, trees suck up carbon dioxide while they pump out oxygen, making our air cleaner. Trees’ leafy cover provide shade, while their roots mitigate flooding. Grassy parks visually break up our concrete streetscape with green space, and they promote community interaction and physical activity. All of this makes city living healthier than it would be otherwise.

But designers have to be pretty creative to pursue these goals in the midst of a development boom. That’s why around the world, architects are finding innovative ways to carve out some elbow room for greenery in the built environment.

green2Pictured above and at right, the Botanic Center in Brussels represents one such solution. The architect, Vincent Callebaut, has proposed dramatically sprucing up a 1977 concrete apartment block with the addition of 274 planter beds to the façade and a striking “Chrysalis” on the roof—a steel-and-glass observation pod filled with a variety of plants and topped with wind turbines and a solar panel array.

From Tapei to New York City, from structures that reach the sky to tunnels that run beneath our feet, here are a few other designs that feature flora in unlikely quarters.


Agora Garden

Another Callebaut creation, this twisting tower in Tapei topped out last November and is slated for completion next September. (Inhabitat has a very cool slideshow of Agora Garden under construction.) As you can see from the above rendering, every one of its 22 stories will be packed with tree- and shrub-laden balconies. And these aren’t simply aesthetic amenities. Callebaut intends for residents to have sufficient outdoor space to grow their own produce. He estimates the plants will absorb 130 tons of carbon dioxide a year. On top of that, the building will incorporate solar energy, rainwater recycling, composting and other measures to further limit its impact on the environment.

Low Line

The Lowline

You may have heard of New York’s High Line, a park running along a disused section of elevated rail tracks. The Lowline takes that idea underground. An abandoned trolley subway tunnel beneath the streets of the Lower East Side will serve as the site for the world’s first underground park. How will the park’s plants flourish? Solar irrigation. A network of mirrors brings sunlight through pipes down into the tunnel, where the sun, normally, wouldn’t shine. The development team built a proof-of-concept Lowline Lab that proved a popular attraction over the past year or so. That bodes well for the full Lowline, projected for completion in 2021.

07_View-of-Southern-space-looking-north-from-Gansevoort-Peninsula_reduced-1400x989

Pier 55

British starchitect Thomas Heatherwick designed this 2.4-acre park to be sited atop an artificial island in New York’s Hudson River. Alternately called Diller Island after its developer, Barry Diller, Pier 55 is slated for completion in 2019. A distinctive element of the island is its support system. Heatherwick designed it to lie upon hundreds of concrete columns rising out of the water to varying heights, for a rolling landscape effect, up to 62 feet. While traditional steel piles have already been driven into the bedrock in the center of the site, the mushroom-shaped columns about the perimeter will be hollow precast concrete piers, to be filled with concrete on site.

Although the Army Corps of Engineers signed off on the design, the project recently stalled in federal court. However, it has weathered several court challenges so far, and it has the support of the mayor, the governor, and neighborhood groups. In any case, the design suggests the possibilities opened up by building on water—a long tradition in coastal cities. (Stay tuned to this blog for more on artificial island construction.)

0440-0

Mashambas

Skyscrapers are typically found in cities. But the winners of the eVolo Magazine 2017 Skyscraper Competition, Polish architects Pawel Lipiński and Mateusz Frankowski, instead direct our attention to rural, sub-Saharan Africa, where more than 40 percent of people live in absolute poverty. (The United Nations defines absolute poverty as a condition in which people suffer from not only low income but also a lack of access to food, safe drinking water, shelter, and other resources.) To attack this problem, Lipiński and Frankowski imagine a farming and educational center in a temporary, modular high-rise that can be assembled, disassembled, and transported from one site in need to another.

The Polish team’s prize-winning concept, Mashambas (from a Swahili word meaning farmland) would feature a permanent farmer’s market on the ground floor, with elevated “fields” for farming on the floors above. The structure would also contain warehouses—for fertilizer, seeds, drones, and equipment—and classrooms. In the architects’ vision, staff would use those classrooms, as well as the farming modules, to train local subsistence farmers in modern agricultural practices. The farmers would then move on to growing crops in their own fields nearby. Eventually, the community would become self-sufficient, and the Mashambas tower could be dismantled and shipped to the next village, leaving behind the anchoring farmer’s market and one-story warehouses.

To be sure, a vertical farm might work at least as well in a cramped urban environment, but by siting their winning eVolo design in a developing rural region, Lipiński and Frankowski are raising awareness of the struggle farmers there face.

Mashambas interior

This post was written by Suffolk Construction’s Content Writer Patrick L. Kennedy, with additional research by Suffolk Intern Simone McLaren. If you have questions, Patrick can be reached at PKennedy@suffolk.com. You can connect with him on LinkedIn here or follow him on Twitter at @PK_Build_Smart.

A building’s skin and bones—literally? The coming world of engineered living materials

When lightning strikes, a tree can often repair the damage by generating another layer of bark to cover the gash. But if that same bolt from above lashes a wood-frame house instead, call the remodelers. Even though the house’s exterior walls are essentially made of trees, the material lost its adaptive quality when lumberjacks felled those mighty pines or oaks.

In the words of scientist Justin Gallivan of the U.S. Defense Advanced Research Projects Agency (DARPA), wood is “rendered inert” when a tree is chopped down. That neutralizes all the advantages of a living material. In their natural state, trees react and adapt to wounds and the weather. So do coral reefs—not to mention your own skin.

What if living materials, with those same self-healing properties, could be grown artificially to the size and strength required to construct a house? Or a skyscraper? Is that possible? That’s what DARPA wants to find out. The agency is soliciting research proposals aimed at the creation of what it calls “engineered living materials (ELM).”

elm_composite

DARPA envisions walls that fix themselves, non-fading surfaces, and driveways that absorb oil spills without a trace. (Source: DARPA)

“Imagine that instead of shipping finished materials, we can ship precursors and rapidly grow them on site using local resources,” Gallivan said to the press in August when announcing the ELM program. “And, since the materials will be alive, they will be able to respond to changes in their environment and heal themselves in response to damage.”

Today, a building’s envelope is often called its “skin,” while the steel frame of a building is known as its skeletal structure, or even its “bones.” In DARPA’s imagined future, these terms will cease to be merely rhetorical. And the sustainability benefits of bio-building might be substantial, when you consider the carbon emissions generated in the production of conventional materials such as concrete.

But DARPA didn’t pull this sci-fi-sounding concept out of thin air. Biochemists and engineers around the globe are already tinkering with limited forms of biomimetic (or life-imitating) materials, as you’ll see below. Gallivan’s vision of self-healing living walls is perhaps the logical extension of these various technologies, and the ELM program might prove the catalyst needed for skin-and-bone to replace brick-and-mortar.

Bacteria brickyard

One inspiration for the ELM program is a start-up that grows bricks in a lab. Yes, grows. The idea occurred to architect Ginger Dosier when she learned that coral polyps—tiny marine animals—create the hard, rocklike substance sandstone naturally. She co-founded the company, bioMASON, with her husband, Michael—like her, an architect and a self-taught scientist. (They have help from a staff of college-taught scientists.)

bio-bricks-image

The lab-grown bricks. (Source: bioMASON)

In their lab in North Carolina’s Research Triangle, the bioMASON team places sand into molds and injects it with trillions of microorganisms (Sporosarcina pasteurii, if you must know), which they feed water and a calcium solution. The bacteria bind with the grains of sand, generating a natural cement that becomes heavy and hardens. The bricks are ready in two to five days.

Compare that with the way traditional bricks are manufactured, by digging up clay (which could be better put to use in agricultural soil) and firing it in a kiln at 2,000 degrees for three to five days. This process uses up lots of fuel and releases carbon dioxide into the atmosphere—800 million tons of it per year, by some estimates. Keep in mind, brick is still the most common building material worldwide, with Asia alone making 1.2 trillion bricks a year.

According to Acorn Innovestments, which provided bioMASON with seed funds, third-party testing determined that the bio-bricks have a strength comparable to traditional masonry, though for now, the start-up is only selling the bricks for use in paving. The bioMASON lab can produce 1,500 bricks a week, and they’re moving next month to a larger facility that will enable them to make 5,000 bricks every two days.

But the Dosiers hope to truly make an impact by shipping the bacteria solution—just one hand-held vial can make 500 bricks—across the globe to builders who can mix it with local sand, whether from nearby deserts (looking at you, Los Angeles) or quarries. Continue Reading ›

Watch: High-tech timber erected at UMass

_SWA3578_13132

High-tech wood panels known as cross-laminated timber (CLT) are replacing concrete slabs on the UMass Design Building. Featuring three to nine layers of lumber glued together, CLTs are like plywood on steroids. (Courtesy ReTHINKWood)

In October we wrote about a revolutionary project using “mass timber” at the University of Massachusetts Amherst. Now that it is actually being erected, the Suffolk Construction team managing the project invited us to the job site to interview the folks responsible for this first-of-its-kind structure.

Arriving on a perfectly sunny day, it was hard to miss the building rising from the campus. Massive large timber columns, beams and panels form a structural frame that is strikingly solid and beautiful. The “high-tech wood” is light, sustainable and aesthetically pleasing. It’s not your typical composite material. You can actually see the grains in the columns that will ultimately be left exposed inside the 86,000-square-foot UMass Design Building.

Don’t forget to reread our original post to learn more about this innovative building and the wood construction movement …

Continue Reading ›

More than just a pretty façade: Innovative terracotta rainscreen comes to life on Fenway apartment building

Boston’s famed Fenway neighborhood might be best known for the city’s hometown nine, but the baseball-centric community is undergoing a building boom that includes six projects under construction and another six already approved by the Boston Redevelopment Authority. Amid the boom, one project sets itself apart from the Fenway field — Viridian Boston  — with an innovative terracotta façade system that bridges the gap between Boston’s old-school-brick buildings and the sleek modern ones sprouting across the city.

About 90 percent of construction waste on this project was recycled or diverted from landfills. Click here to see more of the Viridian’s sustainable stats.

The 21-story apartment building with 10,000 square feet of ground-level retail features Agrob Buchtal’s rainscreen façade noteworthy for its rapid installation, durability, and an enormous selection of colors and design possibilities. The largest project in the United States to feature the Keratwin K20 Engineered Terracotta Façade System, Viridian’s facade has six different panel colors with three different finishes: smooth, grooved and stripy. The nearly 27,000 individual panels have 63 different lengths and were arranged by architect Bruner/Cott & Associates in seemingly random patterns.

Continue Reading ›

Cutting concrete’s carbon footprint

Emitting up to five percent of man-made carbon dioxide on earth, the cement industry is the second largest greenhouse gas emitter worldwide behind power generation. So it stands to reason that finding a more sustainable alternative to standard concrete, which typically contains 10 to 15 percent cement, could have far reaching impacts.

A groundbreaking company based in Halifax, Canada has done just that. CarbonCure Technologies has developed a proprietary technology that allows concrete manufacturers to produce a concrete that sequesters waste carbon dioxide during the manufacturing process to reduce emissions by about 10 to 15 percent on average.

Let that sink in for a second: a concrete that captures carbon dioxide. Continue Reading ›